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Free Energy of the Antiferromagnetic Linear Chain * 
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Rigorous upper and lower bounds for the free energy of the antiferromagnetic Heisenberg linear chain are 
obtained from general convexity properties of the free energy. The lower bound is here derived; the upper 
bound has been obtained previously by Bulaevskii. Both are compared with the calculations of Bonner and 
Fisher for finite chains. 

F OR a linear chain of spin-| atoms we define the 
Hermitian operators (J>0) 

X= 2 / £ , S ^ + i * , Y= 2J Ei Si*Si+1v, (1) 

where S* is the spin operator for the i'th atom with 
Cartesian components denoted by superscripts, and fx 
is the magnetic moment. Given a linear combination 
A of these operators, we are interested in the free 
energy 

F(A,T) = ~kT In T r ^ / * 1 * ] , (2) 

(Tr stands for "trace") at a temperature T in the limit 
of an infinitely long chain.1 

The free energy is known exactly for the Ising 
Hamiltonian2 

WT^Z-HM, (3) 

where H is an external magnetic field, and for the 
transverse Hamiltonian3 

WT=X+Y-~HM, (4) 

but not for the Heisenberg Hamiltonian 

WH=X+Y+Z-HM. (5) 

In this last case, however, the exact4 ground-state 

energy1 (in the limit of an infinite chain) has been 
computed for5 H=0 and6 HT^O (the latter yields the 
exact magnetization curve at zero temperature); also 
the exact4 spectrum of the lowest lying excitations.7 

Numerical results for finite chains8 of up to 11 spins 
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provide good estimates of the thermodynamic quanti
ties for T>J/k, and the extrapolations8 of these results 
to low temperatures are fairly credible. 

Bulaevskii9 has calculated the free energy for (5) 
using a finite-temperature Hartree-Fock approxima
tion. The result is a rigorous upper bound for the free 
energy. This may be seen as follows: Through a suita
ble transformation,3 (4) may be expressed as the energy 
of a set of noninteracting fermions. In this representa
tion define a density matrix p as the direct product of 
density matrices 

P* = ( J, (6) 

where n^ is the occupation number ( 0 < ^ < 1 ) of the 
&th fermion mode. Bulaevskii minimizes 

FB(P) = TTZP5CH2+T Tr[p top] (7) 

by varying the w&. However, (7)10 is a convex down
wards function over the set of all density matrices p 
and achieves its minimum for the canonical density 
matrix11 which yields the canonical free energy (2) 
with 3CH in place of A. Therefore the free energy FB 

obtained by Bulaevskii is never less than the exact 
result. 

In fact (we shall not give the proof) FB is just the 
free energy obtained by replacing Z in (5) by its 
diagonal part in the fermion representation in which 
(4) is diagonal. Peierls' theorem12 then states that the 
result is greater than or equal to the exact free energy. 

The theorems of Peierls12 and Bogoliubov13 are ex
pressions of the following convexity14 property of F as 
defined by (2): The inequality 

F[\A+(l-\)B, T]>XF(^ ,T)+( l -X)F(^ , r ) (8) 

holds whenever A and B are Hermitian matrices of the 
same (finite) dimension and X is a real number be
tween 0 and 1. More generally, if for i~ 1, 2, • • •, n, A{ 

9 L. N. Bulaevskii, Zh. Eksperim. i Teor. Fiz. 43, 968 (1962) 
[English transl.: Soviet Phys.—JETP 16, 685 (1963)]. 

10 N. D. Mermin, Ann. Phys. (N.Y.) 21, 99 (1963). 
11 This is an immediate consequence of the fact that the entropy 

S(p) = — Tr[p lnp] is a convex-upwards function which achieves 
its maximum, subject to the constraint that the average energy, 
Tr[p3C#3, have a fixed value, for the canonical density matrix. 
See E. H. Wichmann, J. Math. Phys. 4, 884 (1963). 

12 R. Peierls, Phys. Rev. 54, 918 (1938). See also Ref. 14. 
13 See the literature citations in Ref. 14. 
14 R. B. Griffiths, J. Math. Phys. 5, 1215 (1964). 
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are Hermitian matrices and a* positive numbers with 
sum equal to 1, the result 

F( Zi aiAi}T)>Zi aiF(Ai9T) (9) 

follows from (8) by induction. 
The Hamiltonian (5) with # = 0 may be written in 

the form 

X+F+Z=4{fX+fF} 
+§{fF+fZ}+§{fX+§Z}. (10) 

By symmetry, the same free energy is associated with 
each term in curly brackets and hence we obtain by 
applying (9) 

F(X+Y+Z,T)>FL(T) 
= FQX+iY,T) = iF(X+Y,iT). (11) 

The right side involves only the transverse Hamiltonian 
for which the free energy is already known.3 

Both FB and FL have been calculated as functions of 
temperature—the requisite integrals were evaluated 
numerically—and are plotted in Fig. 1 together with 
the values for closed chains containing iV^ 10, 11 
atoms.8 There is evidence (but no proof) that the 
N= 10, 11 results provide lower and upper bounds for 
the free energy of the infinite chain, and in this respect 
they are far superior to FB and FL at temperatures 
above J/2k. 

Let SB, SL, and SF be the entropies (~dF/dT) per 
spin associated with FB, FL, and calculated by ex
trapolation8 of the finite chain results, respectively. At 
low temperatures the asymptotic behavior is 

SB~0.320k2T/J, 
SL~0M9&T/J, (12) 
SF~0.3Sk*T/J. 

The agreement among these results is quite remarkable: 
They all predict a linear behavior at low temperatures, 
and the numerical coefficients differ by only 10%. 
There is probably a certain similarity between the 
low-lying spectrum of 3CH and 3Cr, since the latter 
provides the starting point for calculations of both FB 

and FL. This may explain the relatively successful 
calculations15 of the free energy of (5) treating Z as a 
perturbation. 

At r = 0 , FB and FL provide, of course, upper and 
lower bounds for the ground-state energy of the infinite 
chain: —0.839/ and —0.955 7, respectively. These 
may be compared with the rigorous upper and lower 
bounds given by Anderson16: —0.500 / and —1.000 / ; 
and with the exact4'5 value: —0.886 / . 

A lower bound to F(3QH) with H^0 is obtained by 
applying (8) to (5) written in the form 

X+Y+Z-HM 
^\{2X+2Y-EM}+\{2Z-EM}. (13) 

[A better result might be obtained using a division 
analogous to (10); unfortunately, the free energy of the 
Hamiltonian X+Z—HM is not yet known.] We have 
elsewhere6 utilized this bound at zero temperature. 
It is not very useful for small magnetic fields, but 
becomes extremely good (at T= 0) in large fields when 
the magnetization approaches saturation. Bulaevskii's 
estimate is also good6 under the same conditions, and 
not unreasonable (though not as good) in small mag
netic fields. 

In conclusion we may emphasize that both the upper 
and lower bounds for the free energy are based upon the 
convexity property (8); the lower bound directly and 
the upper bound by way of Peierls' theorem. The 
convexity property is thus quite useful for approximate 
estimates as well as existence proofs.14 
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